Prediction of Intention during Interaction with iCub with Probabilistic Movement Primitives

نویسندگان

  • Oriane Dermy
  • Alexandros Paraschos
  • Marco Ewerton
  • Jan Peters
  • François Charpillet
  • Serena Ivaldi
چکیده

This article describes our open-source software for predicting the intention of a user physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer the intention of the human partner during collaboration, by predicting the future intended trajectory: this capability is critical to design anticipatory behaviors that are crucial in human–robot collaborative scenarios, such as in co-manipulation, cooperative assembly, or transportation. We propose an approach to endow the iCub with basic capabilities of intention recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile method for representing, generalizing, and reproducing complex motor skills. The robot learns a set of motion primitives from several demonstrations, provided by the human via physical interaction. During training, we model the collaborative scenario using human demonstrations. During the reproduction of the collaborative task, we use the acquired knowledge to recognize the intention of the human partner. Using a few early observations of the state of the robot, we can not only infer the intention of the partner but also complete the movement, even if the user breaks the physical interaction with the robot. We evaluate our approach in simulation and on the real iCub. In simulation, the iCub is driven by the user using the Geomagic Touch haptic device. In the real robot experiment, we directly interact with the iCub by grabbing and manually guiding the robot’s arm. We realize two experiments on the real robot: one with simple reaching trajectories, and one inspired by collaborative object sorting. The software implementing our approach is open source and available on the GitHub platform. In addition, we provide tutorials and videos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Prediction of Extraversion during Human-Robot Interaction

This paper introduces an automatic system for the prediction of extraversion during the first minutes interaction between humans and and a humanoid robot. In such interactions the behavioural response of people depends by their personality traits and by their attitude towards robots. A set of non-verbal features is proposed to characterize such behavioural responses. Results obtained using such...

متن کامل

Predicting Extraversion from Non-verbal Features During a Face-to-Face Human-Robot Interaction

In this paper we present a system for automatic prediction of extraversion during the first thin slices of human-robot interaction (HRI). This work is based on the hypothesis that personality traits and attitude towards robot appear in the behavioural response of humans during HRI. We propose a set of four non-verbal movement features that characterize human behavior during interaction. We focu...

متن کامل

A Probabilistic Framework for Semi-autonomous Robots Based on Interaction Primitives with Phase Estimation

This paper proposes an interaction learning method suited for semi-autonomous robots that work with or assist a human partner. The method aims at generating a collaborative trajectory of the robot as a function of the current action of the human. The trajectory generation is based on action recognition and prediction of the human movement given intermittent observations of his/her positions und...

متن کامل

Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks

This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human-robot movement coordination. It uses imitation learning to construct a mixture model of human-robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human o...

متن کامل

A Probabilistic Representation for Dynamic Movement Primitives

Dynamic Movement Primitives have successfully been used to realize imitation learning, trial-and-error learning, reinforcement learning, movement recognition and segmentation and control. Because of this they have become a popular representation for motor primitives. In this work, we showcase how DMPs can be reformulated as a probabilistic linear dynamical system with control inputs. Through th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Front. Robotics and AI

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017